Enhancing LoRa Reception with Generative Models: Channel-Aware Denoising of LoRaPHY Signals

<u>Kanav Sabharwal</u>¹, Soundarya Ramesh¹, Jingxian Wang¹, Dinil Mon Divakaran^{1,2}, Mun Choon Chan ¹

¹National University of Singapore

Wide Area Sensor Networks

Structural Monitoring

City Scale Tunnel Monitoring

Construction Site Monitoring

Low-Power Wide Area Networks (LP-WANs)

Image Credits: Ackcio

LoRa Network Characteristics

- Open source
- Long Range transmissions
- Sub-GHz unlicensed ISM band
- Battery constrained end nodes

LoRaPHY – LoRa's Physical Layer

- Uses Chirp Spread Spectrum (CSS) for signal modulation
 - Chirp: frequency sweep across bandwidth over time
- Spreading Factor (SF)
 - Each SF increase doubles ToA
 - SF ranges 7-12
- Each symbol encodes SF bits
 - 2^{SF} start frequencies encode data

LoRa PHY Demodulation

Need to identify the "starting frequency"

Challenge: Channel Impairments

- Attenuation
 - From long distance transmission
- Multi-path Fading
 - From fleeting and static reflectors
- Interference
 - From other transmissions in ISM band
- Hardware Frequency and Time Offsets
 - Cheap hardware

High-Rate Packet Corruption!

Urban Channel Impairments

Real-world Noisy Environments

Urban Channel Impairments

Real-world Noisy Environments

Can *channel impairments* be mitigated by denoising the LoRaPHY signal at the gateway?

High-Rate Packet Corruption!

Current State-of-the-Art: Neural Demodulation

Neural Demodulation – Current SoTA

- NELoRa^[SenSys '21] introduced Neural Demodulation
- <u>Replace</u> LoRa Demodulation

Key Challenges:

A. Channel Aware denoisingB. Compact model with fast inference

Drawbacks:

Lack Channel Awareness ⇒ Training Data Dependent
Large Model Size ⇒ Long Inference Time

Neural Demodulation – Current SoTA

- NELoRa^[SenSys '21] introduced Neural Demodulation
- <u>Replace</u> LoRa Demodulation

GLORIPHY Channel-Aware Neural Denoising framework for LoRaPHY

Focus of This Talk

Channel Aware denoisingCompact model with fast inference

How do we integrate *channel awareness* in GLoRiPHY?

Challenge: Integrating channel awareness

Why do we need to model the channel?

Received Signal

- Attenuation
- Multipath Fading

Environmentdependent statistical **patterns!** Error Rate shown to increase by orders of magnitude under multipath

((၅))

LoRa highly susceptible to multipath

Error Rate

Challenge: Modelling Channel Response h

<u>Convolved</u> Noise

h * x

- Attenuation
- Multipath Fading

Environmentdependent statistical patterns!

Environment Variability

- Countless unique combinations of channel patterns.
- E.g., delay profile, attenuation, etc.
- Temporal Variability:
 - Channel changes over time.

Channel changes with environment and time

Challenge: Modelling Channel Response h

<u>Convolved</u> Noise

Environment Variability

Can we estimate the Channel *h* from the received packet?

Environmentdependent statistical **patterns!** Channel changes over time.

Channel changes with environment and time

Our Key Idea: Leveraging Preamble for Channel Estimation

Challenge: Extracting Channel Features

Preamble suffers from complex combination of noise

Real-world preamble

Channel Compensation Module

Channel Compensation Module

Key Benefit:

✓ GLORiPHY learns channel as a function of the preamble h = f (Preamble)

✓ Allows generalization to environments *unseen* in training

GLoRiPHY - Overview

Enhanced Demodulation with GLoRiPHY

Enhanced Demodulation with GLoRiPHY

(LoRa Demodulation)

GLORiPHY integrates with LoRa demodulation without requiring costly overhaul.

Evaluations

Setup -Datasets

- Real-world Tested
 - Transmitter: SX1272- based
 - Gateway: USRP B210
 - *f_c* = 868 MHz; BW = 125 KHz
 - SF 8
 - Random Payload
- Simulation Framework
 - Simulate SF 8-11
 - Simulate several theoretical channels

Baseline and Metrics

Evaluation Metric: Symbol Error Rate (SER %) = $\frac{\text{Incorrectly Identified Symbols}}{\text{Total Received Symbols}} \times 100$

Real-world Test

- Trained on *indoor* testbed
- Tested with leave-one-out approach

Real-world Test

GLORIPHY maintains **lowest SER** by effectively *compensating* for channel impairments.

Real-world Generalizability Test

- Train on Indoor Testbed
- Testing Data collected
 - using hardware unseen during training.
 - from diverse environments

Real-world Generalizability Test

Demonstrates GLoRiPHY's channel awareness enabling SER gain, even in environments vastly different from the training setting.

Model Size and Inference Time

• Evaluate symbol identification time for 64 symbols

GLoRiPHY efficiently manages model size and inference time.

SER Gain in different Environments

- In different environments
- SER Gain = SER reduction over LoRaPHY

Simulation Data Test

- Test if performance generalizes across SFs
- Generalization across diverse Rayleigh/Rician + AWGN Channels

Performance generalizes across SFs

Conclusion

- We present **GLoRiPHY**, a preamble-based, channel-aware denoising framework that significantly enhances LoRaPHY demodulation.
- Compared to state-of-the-art, GLoRiPHY demonstrates:
 - Upto 2.85x improvement SER reduction
 - 8.64x SER improvement in unseen environements
 - Upto 5.75x faster inference times

Key step towards broader applicability of neural solutions on Physical Layer.

More Information

GLoRiPHY Training

GLoRiPHY Training

(2) Channel Compensation Module Training

Channel Compensation Module

Training Loss reduction requires handling <u>convolved</u> noise Enhanced Symbol Generation Module

- Acts as a critic in *Channel Compensation Module* training
- AWGN filter can address only <u>additive</u> noise

GLoRiPHY Training

• Dual Component Loss

- MSE to reduce error on generated STFT
- CCE to reduce final demodulation errors $Loss = \alpha \cdot MSE + \beta \cdot CCE$
- Curriculum Learning
 - Input data complexity increases with training stage

GLORIPHY Architecture

• GLoRiPHY-Core

- Core learning model for GLoRiPHY
- Based on Conformer architecture, combining:
 - MHSA For long term features
 - CNN For local features

Challenge!

- Minimal frequency resolution $= 2^{SF}$
- Can lead to models with billions of parameters

Compact Model Size

