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Wide Area Sensor Networks 
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Low-Power Wide Area Networks
(LP-WANs)



LoRa Network Characteristics 

• Open source

• Long Range transmissions

• Sub-GHz unlicensed ISM band

• Battery constrained end nodes

3

Gateway
Sensor

Sensor

End Nodes



4

LoRaPHY – LoRa’s Physical Layer
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• Uses Chirp Spread Spectrum 
(CSS) for signal modulation
▪ Chirp: frequency sweep across 

bandwidth over time

• Spreading Factor (SF)
▪ Each SF increase doubles ToA 
▪ SF ranges 7-12

• Each symbol encodes SF bits
▪ 2SF start frequencies encode data



LoRa PHY Demodulation

FFT Symbol 137

Need to identify the “starting frequency”

Dechirp

Identify Peak Frequency

Dechirped SymbolLoRa Symbol



• Attenuation 
▪ From long distance transmission

• Multi-path Fading
▪ From fleeting and static reflectors

• Interference
▪ From other transmissions in ISM band

• Hardware Frequency and Time Offsets
▪ Cheap hardware

Challenge: Channel Impairments
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High-Rate Packet Corruption!



Urban Channel Impairments
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FFT

Real-world Noisy Environments

Dechirp

▪ Shifted Peak
▪ Overwhelmed by Noise

High-Rate Packet Corruption!

Symbol 44

Dechirped SymbolReceived Symbol



Urban Channel Impairments
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FFT

Real-world Noisy Environments

Dechirp

▪ Shifted Peak
▪ Overwhelmed by Noise

High-Rate Packet Corruption!

Symbol 44

Dechirped SymbolReceived Symbol

c

Can channel impairments be mitigated by 
denoising the LoRaPHY signal at the gateway?
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Current State-of-the-Art:

Neural Demodulation



• NELoRa[SenSys ‘21] introduced Neural Demodulation

• Replace LoRa Demodulation
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Neural Demodulation – Current SoTA

Symbol 7
Neural 

Noise Mask Classifier

Drawbacks:  ① Lack Channel Awareness ⇨ Training Data Dependent
   ② Large Model Size ⇨ Long Inference Time

- Upto 4096 
symbols! (2SF)

- Primarily assume 
additive random noise

Received Symbol Masked Symbol Identified Symbol ID

c

Key Challenges:
A. Channel Aware denoising
B. Compact model with fast inference



• NELoRa[SenSys ‘21] introduced Neural Demodulation

• Replace LoRa Demodulation
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Neural Demodulation – Current SoTA
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GLoRiPHY
Channel-Aware Neural Denoising 

framework for LoRaPHY

A. Channel Aware denoising
B. Compact model with fast inference
A. Channel Aware denoising
B. Compact model with fast inference

Focus of This Talk
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How do we integrate channel awareness in 
GLoRiPHY?



Why do we need to model the channel?

𝑦 = ℎ ∗ 𝑥 + 𝑛
Received Signal Convolved Noise Additive Noise

▪ Attenuation
▪ Multipath Fading

▪ Thermal Noise
▪ EM Interference

Random Noise
Environment-

dependent statistical 
patterns!

Challenge: Integrating channel awareness 
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Error Rate shown to increase by 
orders of magnitude under multipath

Error Rate

LoRa highly susceptible to multipath



Environment-
dependent statistical 

patterns!

Challenge: Modelling Channel Response ℎ 

• Environment Variability
▪ Countless unique combinations of channel 

patterns. 

▪ E.g., delay profile, attenuation, etc.

• Temporal Variability: 
▪ Channel changes over time.
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ℎ ∗ 𝑥

Convolved Noise

Channel changes with environment and time

▪ Attenuation
▪ Multipath Fading



Environment-
dependent statistical 

patterns!

Challenge: Modelling Channel Response ℎ 

• Environment Variability
▪ Countless unique combinations of channel 

patterns. 

▪ E.g., delay profile, attenuation, etc.

• Temporal Variability: 
▪ Channel changes over time.
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ℎ ∗ 𝑥

Convolved Noise

Channel changes with environment and time

▪ Attenuation
▪ Multipath Fading

cCan we estimate the Channel ℎ from the 
received packet?

c
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Our Key Idea: Leveraging Preamble for Channel 
Estimation

Preamble

Fixed Across Packets 

Payload Symbols

② Channel Aware 
Denoising of Payload

① Estimate How 
Channel Modifies Signal

Estimate Channel ℎ 𝑥 =  ℎ−1 ∗ 𝑦

LoRa Packet



𝑦 = ℎ ∗ 𝑥 + 𝑛
Received Signal Convolved Noise Additive Noise

Random NoiseEnvironment-dependent 
statistical patterns!

Challenge: Extracting Channel Features
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Preamble suffers from 
complex combination of noise

Real-world preamble

Enhanced Symbol 
Generation Module

Channel Compensation 
Module

GLoRiPHY decouples 
the processing of both 

noise components
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Received Preamble

Received Symbol

Channel Feature 
Extraction

Channel Compensation Module

Channel Compensation Module

Symbol 
Correction

Known Preamble

Preamble Cross Correlation

• Analyze how Signal of interest is 
altered 
▪ Delay profile, attenuation, etc.

• Ignore random noise

Incorporate Conformer 
(CNN+Transformer) layers for 

channel compensation.

Estimate 
Channel ℎ

𝑥 =  ℎ−1 ∗ 𝑦
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Received Preamble

Received Symbol

Channel Feature 
Extraction

Channel Compensation Module

Channel Compensation Module

Symbol 
Correction

Known Preamble

Preamble Cross Correlation

• Analyze how Signal of interest is 
altered 
▪ Delay profile, attenuation, etc.

• Ignore random noise

Incorporate Conformer 
(CNN+Transformer) layers for 

channel compensation.

Estimate 
Channel ℎ

𝑥 =  ℎ−1 ∗ 𝑦

c

Key Benefit:

✓ GLoRiPHY learns channel as a function of the preamble
𝒉 = 𝒇 Preamble

✓ Allows generalization to environments unseen in training



GLoRiPHY - Overview
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Enhanced Symbol 
Generation Module

AWGN 
Filtering

Symbol Denoised 
by GLoRiPHY

LoRa 
Demodulation

𝑦 = ℎ ∗ 𝑥 + 𝑛

Received Signal Convolved Noise Additive Noise

Preamble 
Preprocessing

Received Preamble

Received Symbol

Channel Feature 
Extraction

Channel Compensation Module

Symbol 
Correction



Enhanced Demodulation with GLoRiPHY

22

LoRa Demodulation

GLoRiPHY + LoRa Demodulation

GLoRiPHY

LoRa 
Demodulation

Symbol 75

LoRa 
Demodulation

Symbol 77

Received Symbol

Received Symbol Symbol Denoised 
by GLoRiPHY



Enhanced Demodulation with GLoRiPHY
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LoRa Demodulation

GLoRiPHY + LoRa Demodulation

GLoRiPHY

LoRa 
Demodulation

Symbol 75

LoRa 
Demodulation

Symbol 77

Received Symbol

Received Symbol Symbol Denoised 
by GLoRiPHY

c
GLoRiPHY integrates with LoRa demodulation without requiring 

costly overhaul.
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Evaluations



Setup -Datasets
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Real-World Testbed

• Real-world Tested
▪ Transmitter: SX1272- based

▪ Gateway: USRP B210

▪ 𝑓𝑐  = 868 MHz; BW = 125 KHz

▪ SF 8

▪ Random Payload

• Simulation Framework
▪ Simulate SF 8-11

▪ Simulate several theoretical 
channels

Train Node

Legend

Test Node ID x



Baseline and Metrics
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LoRa 
Demodulation

NELoRa

Symbol Error Rate (SER %) =
Incorrectly Identified Symbols

Total Received Symbols
× 100

Received Symbol

A. Trained on AWGN
B. Tuned with scenario-

specific training data

Baseline 1

Baseline 2

Evaluation Metric: 



Real-world Test

• Trained on indoor testbed

• Tested with leave-one-out approach
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Real-world Test

• Trained on indoor testbed

• Tested with leave-one-out approach
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GLoRiPHY maintains lowest SER by effectively compensating for 
channel impairments.



Real-world Generalizability Test

• Train on Indoor Testbed

• Testing Data collected 
▪ using hardware unseen during training.

▪ from diverse environments
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Real-world Generalizability Test
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A

C

B

D

E

F

Semi Outdoor (Unseeen)

Outdoor LOS - 
Long-Range 

(Unseen)Outdoor (Unseen)

G H

Demonstrates GLoRiPHY's channel awareness enabling SER gain, even in 
environments vastly different from the training setting.



Model Size and Inference Time

• Evaluate symbol identification time for 64 symbols
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GLoRiPHY efficiently manages model size and inference time.

Exponential 
increase!



SER Gain in different Environments

• In different environments

• SER Gain = SER reduction over LoRaPHY
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Simulation Data Test 
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• Test if performance generalizes 
across SFs

• Generalization across diverse 
Rayleigh/Rician + AWGN Channels

Performance generalizes 
across SFs



Conclusion

• We present GLoRiPHY, a preamble-based, channel-aware denoising 
framework that significantly enhances LoRaPHY demodulation.

• Compared to state-of-the-art, GLoRiPHY demonstrates:

▪Upto 2.85x improvement SER reduction

▪ 8.64x SER improvement in unseen environements

▪Upto 5.75x faster inference times
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Key step towards broader applicability of neural solutions on Physical Layer.



More Information

35



GLoRiPHY Training

36

① Pre-Training AWGN Filter

② Channel Compensation Module Training

Channel 
Compensation Module

Enhanced Symbol Generation 
Module

AWGN Filter

GLoRiPHY-Core

Model Training

AWGN Filter

GLoRiPHY-Core

Model Frozen

AWGN
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② Channel Compensation Module Training

Channel 
Compensation Module

Enhanced Symbol Generation 
Module

AWGN Filter

GLoRiPHY-Core

Model Frozen

Training Loss reduction 
requires handling 
convolved noise

• Acts as a critic in Channel 
Compensation Module 
training  

• AWGN filter can address only 
additive noise 

GLoRiPHY Training



GLoRiPHY Training

• Dual Component Loss
▪ MSE to reduce error on generated STFT

▪ CCE to reduce final demodulation errors
Loss =  𝛼 ∙ MSE +  𝛽 ∙ CCE

• Curriculum Learning
▪ Input data complexity increases with training stage
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GLoRiPHY Architecture

Challenge!

• Minimal frequency resolution = 2SF

• Can lead to models with billions of 
parameters
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FCNN
MHSA

FCNN
Layer 
Norm

Conv 
Module

GLoRiPHY-Core

2 × 2SF

× 33

• GLoRiPHY-Core
▪ Core learning model for GLoRiPHY

▪ Based on Conformer architecture, 
combining:
• MHSA – For long term features

• CNN – For local features
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Compact Model Size

Challenge!

Minimal resolution 
in frequency to 

identify a symbol 

= 2SF

2 × 2SF × 33

LoRa 
Demodulation

(64 x Emb Dim)

SF Emb Dim

7/8/9 256

10/11/12 512

GLoRiPHY

Manage Compact 
Embedding 

Representations

• Generate channel-
compensated symbols

• Ensure high fidelity 
across amplitude, phase, 
frequency, and time

• Enables direct LoRa 
demodulation
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