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Wide Area Sensor Networks

Structural Monitoring City Scale Tunnel Monitoring Construction Site Monitoring

Low-Power Wide Area Networks
Image Credits: Ackcio (LP WANS) LORa 2




LoRa Network Characteristics

(4)
* Open source

M (@)
* Long Range transmissions

15 MHZ

e Sub-GHz unlicensed ISM band ((I 433/868/°

e Battery constrained end nodes Gateway

(‘I

End Nodes



LoRaPHY — LoRa’s Physical Layer

* Uses Chirp Spread Spectrum
(CSS) for signal modulation
= Chirp: frequency sweep across
bandwidth over time
e Spreading Factor (SF)
= Each SFincrease doubles ToA
= SF ranges 7-12

* Each symbol encodes SF bits
= 25F start frequencies encode data




LoRa PHY Demodulation

Need to identify the “starting frequency”
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Challenge: Channel Impairments

Attenuation
" From long distance transmission

Multi-path Fading
* From fleeting and static reflectors

()

Interference
= From other transmissions in ISM band

Hardware Frequency and Time Offsets ottt = Gateway
" Cheap hardware |

High-Rate Packet Corruption!




Urban Channel Impairments

Real-world Noisy Environments

Received Symbol
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High-Rate Packet Corruption!




Can channel impairments be mitigated by

denoising the LoRaPHY signal at the gateway?

High-Rate Packet Corruption!




Current State-of-the-Art:
Neural Demodulation



Neural Demodulation — Current SoTA

Key Challenges:

A. Channel Aware denoising
B. Compact model with fast inference

Drawbacks: (1) Lack Channel Awareness = Training Data Dependent
' (2) Large Model Size => Long Inference Time

-----------------------------------------------------------------------------------------------------------------------------------------------------------------
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Neural Demodulation — Current SoTA

e NELoRa!*e"svs 21l introduced Neural Demodulation

* Replace LoRa Demodulation

- Primarily assume
additive random noise

Neural
Noise Mask

- Upto 4096
symbols! (2°F)

Symbol 7

I\/Iasked Symbol Identified Symbol ID

Drawbacks: @ Lack Channel Awareness = Training Data Dependent
: @ Large Model Size => Long Inference Time '

-----------------------------------------------------------------------------------------------------------------------------------------------------------------
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Focus of This Talk

GLORIPHY

Neural
framework for LoRaPHY

A. Channel Aware denoising

B. Compact model with fast inference
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How do we integrate channel awareness in

GLORIPHY?




Challenge: Integrating channel awareness

Why do we need to model the channel?

Convolved Noise

= h * x
i = Attenuation

Received Signal

’ 11

Error Rate

((;é))

Error Rate shown to increase by
orders of magnitude under multipath

= Multipath Fading

Environment-
dependent statistical
patterns!

14



Challenge: Modelling Channel Response h

Convolved Noise

h x x
= Attenuation
= Multipath Fading

* Environment Variability

" Countless unique combinations of channel
patterns.

= E.g., delay profile, attenuation, etc. f
« Temporal Variability:

. ] .
Environment- Channel changes over time.

dependent statistical
patterns!

15



Challenge: h

Can we estimate the Channel ' from the
received packet?




Our Key Idea: Leveraging Preamble for Channel
Estimation

Fixed Across Packets

//L/// | |

LoRa Packet

Preamble |

Payload Symbols

|

@ Estimate How
Channel Modifies Signal
Estimate Channel h

|

ﬁ

@ Channel Aware
Denoising of Payload
x=htxy
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Challenge: Extracting Channel Features

Preamble suffers from
complex combination of noise

Real-world preamble

Received Signal Convolved Noise Additive Noise
y = h * x + n

Environment-dependent
statistical patterns!

GLoRiPHY decouples

the processing of both ‘
noise components
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Channel Compensation Module

Preamble Cross Correlation

* Analyze how Signal of interest is
altered

= Delay profile, attenuation, etc.
* Ignore random noise

Incorporate Conformer
(CNN+Transformer) layers for
channel compensation.

S e Lstimate
Extraction Channel h

Received Symbol

Symbol
Correction
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Channel Compensation Module

Key Benefit:

v" GLoRiPHY learns channel as a function of the preamble
h = f (Preamble)
v Allows generalization to environments unseen in training
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GLORIPHY - Overview

Received Signal Convolved Noise Additive Noise
h * x + n LoRa
Demodulation
Preamble. Channel Feature
Preprocessing Extraction AWGN

Filtering

Symbol Denoised

Symbol by GLoRiPHY
Correction

Received Symbol
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Enhanced Demodulation with GLoRiPHY
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Enhanced Demodulation with GLoRiPHY

GLORIPHY

without requiring

costly overhaul.
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Evaluations



Setup -Datasets

* Real-world Tested / indoor (Seen) \
R e ' 4

" Transmitter: SX1272- based
= Gateway: USRP B210

" f. =868 MHz; BW = 125 KHz
= SF8

= Random Payload

Real-World Testbed

O Test Node ID x

AP et
- £ LA 0 A\ "
« 110m — /
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Baseline and Metrics

LoRa
Demodulation

A. Trained on AWGN

Baseline 2 WEN:ER B.  Tuned with scenario-

specific training data

Received Symbol

.

Evaluation Metric:  Symbol Error Rate (SER %) = Inc%l;)rtzcltge Iccl?\?;élﬁse;rgggllsms

hé&

X 100
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Real-world Test

* Trained on indoor testbed |
ndoor

* Tested with leave-one-out approach (Seen)

LoRaPHY
m NELoRa
B GLoRiPHY
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Indoor

(Seen)

15 \ LoRaPHY
. \ NELoRa
9810 B GLORIiPHY
A
0p)] 5 \

0 L [ .

Node 1 Node 2 Node 3

GLoRiPHY maintains lowest SER by effectively compensating for

channel impairments.
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Real-world Generalizability Test

* Train on Indoor Testbed

* Testing Data collected

" using hardware unseen during training.
= from diverse environments

2.85km
Outdoor LOS - Long-Range (Unseen)

Semi Outdoor (Unseeen) Outdoor (Unseen)
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Real-world Generalizability Test

Outdoor LOS -
Long-Range

(Unseen)
LoRaPHY
,330 : : NELoRa
<50 : : BN GLORIPHY |
' - :
LL) C =
10 : I :
Node A Node B eD NodeE NodeF: NodeG NodeH

Demonstrates GLoRiPHY's channel awareness enabling SER gain, even in

environments vastly different from the training setting.
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Model Size and Inference Time

* Evaluate symbol identification time for 64 symbols
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GLoRiPHY efficiently manages model size and inference time.
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SER Gain in different Environments

* In different environments
e SER Gain = SER reduction over LoRaPHY

B Seen

B Unseen

=
o

<

Mean SER (%) Gain

NELoRa GLORiPHY
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Simulation Data Test

 Test if performance generalizes
across SFs

LoRaPHY
= NELoRa
B GLoRiPHY

N
o

W
o

e Generalization across diverse
Rayleigh/Rician + AWGN Channels

N
o

=
o

Symbol Error Rate (SER %)

Performance generalizes
across SFs

©
wn
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0

SF9 SF10 SF11
Spreading Factor (SF)
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Conclusion

* We present GLoRiIPHY, a preamble-based, channel-aware denoising
framework that significantly enhances LoRaPHY demodulation.

 Compared to state-of-the-art, GLoRiPHY demonstrates:
= Upto 2.85x improvement SER reduction
= 8.64x SER improvement in unseen environements
= Upto 5.75x faster inference times

Key step towards broader applicability of neural solutions on Physical Layer.
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More Information
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GLORIPHY Training

Model Training

GLoRiPHY-Core

AWGN Filter

Model Frozen

GLoRiPHY-Core
AWGN Filter




GLORIPHY Training
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Training Loss reduction
requires handling
convolved noise

Model Frozen

GLoRiPHY-Core

AWGN Filter

e Acts as a critic in Channel
Compensation Module
training

 AWGN filter can address only
additive noise

\————————————————————/
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GLORIPHY Training

* Dual Component Loss
= VISE to reduce error on generated STFT

= CCE to reduce final demodulation errors
Loss = a-MSE + S - CCE

* Curriculum Learning
" Input data complexity increases with training stage
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GLORiPHY Architecture

e GLoRiPHY-Core Cha”enge!
» Core learning model for GLoRiPHY

_  Minimal frequency resolution = 2°F
= Based on Conformer architecture,

combining: * Can lead to models with billions of
e MHSA — For long term features parameters
* CNN — For local features
GLoRiPHY-Core

32w 31

FCNN Module FCNN Norm
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Compact Model Size

2><ZSF><33

Challenge!

Minimal resolution
in frequency to

identify a symbol
— »SF

GLoRIPHY

(64 x Emb Dim)

10/11/12 512

LoRa
Demodulation

Manage Compact
Embedding
Representations

Generate channel-
compensated symbols

Ensure high fidelity
across amplitude, phase,
frequency, and time

Enables direct LoRa
demodulation
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