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Abstract—LoRa networks have emerged as a promising so-
lution for long-range, low-power communication in IoT appli-
cations. However, a significant challenge in LoRa networks is
the uneven battery depletion among nodes, due to the varying
transmission configurations required to support different dis-
tances between the nodes and the gateway. This disparity in
battery consumption poses a substantial challenge to the overall
network lifetime. This paper introduces EGAL, a relay-based
approach designed to address the battery imbalance issue by
ensuring balanced energy consumption across all nodes. Unlike
purely multi-hop networks, EGAL follows a hybrid approach
that selectively uses relays when necessary while maintaining
direct connections to the gateway. EGAL employs a reward-based
algorithm that dynamically adjusts relay duties and integrates
predictive analytics, thereby enhancing network lifespan with
minimal overhead. The proposed solution is validated through
NS3 simulation and real-world testbed, demonstrating significant
improvements in network lifetime. Specifically, in simulations,
EGAL exhibits up to a 457% increase in network lifetime over
standard LoRaWAN, and in hardware tests, it shows up to a 70%
decrease in total energy consumption. The key contributions of
this work include the development of the EGAL algorithm, its
integration with standard LoRaWAN, and extensive validation
of its effectiveness.

Index Terms—LoRa Networks, Battery imbalance, Network
lifetime, Relay-based approach, Balanced energy consumption,
Minimal overhead

I. INTRODUCTION

LoRa is a leading Low Power Wide Area Network (LP-
WAN) technology developed by Semtech [1], renowned for
its long-range communication capabilities and low power
consumption [2]. The open-source nature of LoRa, coupled
with its operation in the unlicensed spectrum, makes it an
ideal choice for a wide array of Internet of Things (IoT)
applications, including smart cities, industrial IoT, and en-
vironmental monitoring [3]-[6]. Despite its advantages, a
persistent challenge in LoRa networks is the imbalance in
energy consumption among nodes. In typical deployments,
nodes located farther from the gateway must maintain long-
range communication by utilizing higher Spreading Factors
(SFs)—a configuration that nearly doubles per-packet energy
consumption with each increment in SF. As a result, these
distant nodes expend significantly more energy, potentially
consuming up to a maximum of 32 times more energy than
those located closer to the gateway. This energy imbalance
causes certain nodes to deplete their batteries much faster than
others, thereby reducing the overall network lifetime.
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Fig. 1: EGAL balances battery load across the network by
dynamically offloading packets from a draining end-node to
an intermediate node with sufficient battery capacity.

We define network lifetime as the duration from the
network’s initialization until the battery of the first node is
exhausted. This definition is particularly relevant in mission-
critical scenarios, such as mine site and underground tun-
nel monitoring. In these inaccessible environments, frequent
battery replacements are impractical, and overall network
maintenance costs can be significantly reduced if all nodes
sustain their operations for as long as possible and reach
battery depletion simultaneously. Moreover, in such scenarios,
the failure of even a single node can partition the network and
impact its performance. While adding redundant nodes could
extend the network’s lifetime, this approach also increases
operational costs. Therefore, to effectively extend network
lifetime, it is essential to balance energy consumption across
all nodes to prevent premature battery depletion in some nodes.

In the past, various efforts have been made to improve
energy efficiency in LoRa networks. Non-relay-based meth-
ods [7]-[12], which involve direct communication between
nodes and the gateway, focus on identifying the most energy-
efficient configurations for communication. However, these
methods fail to address the fundamental issue of imbalance
energy consumption across the LoRa network.

Conversely, relay-based approaches' that rely on static
scheduling [13] pre-plan fixed relay routes for each node.
Such strategy inherently limits the responsiveness to changing
network conditions. Dynamic strategies attempt to overcome
this limitation by making global, centralized decisions [14] that
are updated according to current network conditions. However,

LA relay refers to an active LoRa node that forwards data from other nodes
in addition to transmitting its own data.



this approach incurs high overheads to continuously update
the central controller. To mitigate this overhead, decision-
making can be delegated to individual nodes [15]. Yet, without
a comprehensive view of the entire network, these local
decisions tend to be greedy and globally sub-optimal.

To address the limitations in balancing energy consumption
in LoRa networks, we propose EGAL?, a dynamic relay-based
approach with centralized decision-making. As illustrated in
Figure 1, EGAL offloads data transmission to intermediate
nodes with higher battery levels when required, addressing
the battery disparity problem. Instead of purely operating as
a multi-hop LoRa network, EGAL focuses on using relays to
complement a standard single-hop LoRa network. By dynam-
ically adjusting relay duties, EGAL aims to maintain even
battery levels across all nodes, thereby enhancing network
lifetime.

The challenges in developing a system to effectively address
the problem of energy imbalance in LoRa networks can be
summarized as follows:

1. Strategic Relay Selection: Relay selection should dy-
namically adapt to changing network conditions. The process
should balance the use of relay nodes to minimize energy
consumption while determining when direct communication
with the gateway is more appropriate, ensuring that no single
node is overburdened with relay requests.

2. Minimizing Overhead: While centralized decision-making
with global view of the network allows effective relay se-
lection, the performance gain can be negated if there are
frequent control updates to the gateway resulting in substantial
overhead. It is crucial to design a protocol that minimizes this
overhead while retaining a sufficiently “global” view.

3. Optimizing Link Exploration: Another challenge in main-
taining a centralized view of the network is the need to
explore inactive® network links. While exploring new routes
may uncover more energy-efficient options, this process can
incur substantial energy on exploring sub-optimal choices. The
protocol must strike a balance between efficiently using known
routes and exploring new ones, adapting to evolving network
conditions without incurring surplus energy costs.

EGAL addresses the challenges discussed above as follows.
First, EGAL employs a reward metric for every communica-
tion link, reflecting the network load faced by the involved
nodes and their residual battery levels. By selecting the link
with the highest reward, the algorithm ensures that data is
transmitted via the optimal path, addressing the first challenge
of strategic relay selection.

The use of a reward metric also helps quantify multiple
parameters that evaluate the cost of a communication link
into a single numerical value. This compression significantly
reduces the amount of information that needs to be exchanged
within the network, resulting in minimal overhead. EGAL

2EGAL is derived from “egalitarianism,” emphasizing equal energy distri-
bution among all network nodes.

3Inactive or non-communicating links are those not used in the current
communication but are potential candidates for future communication

therefore effectively minimizes overhead while maintaining
centralized decision logic.

Finally, EGAL addresses the challenge of optimizing link
exploration by estimating the rewards for inactive links. This
estimation is done at the gateway with zero additional over-
head, allowing the system to maintain an up-to-date under-
standing of the potential value of each link, eliminating the
need for active exploration.

In summary, the key contributions of our work are:

o We present EGAL, a relay-based centralized approach
that calculates rewards for active communication links
at the nodes and estimates rewards for inactive links
at the gateway. This method ensures balanced energy
usage across all nodes with minimal overhead, thereby
extending the network’s lifetime.

o We implement a comprehensive system that seamlessly
integrates EGAL with the standard LoRaWAN stack,
enabling easy deployment in existing LoRa networks.

o We extensively validate our implementation using NS3
simulations and real-world deployment.

II. BACKGROUND AND ENERGY FRAMEWORK
A. LoRa - An Overview:

LoRa (Long Range) is a physical layer technology operating
in sub-GHz unlicensed frequency bands, offering communi-
cation ranges up to tens of kilometers using Chirp Spread
Spectrum (CSS) modulation [16]. A key feature of LoRa is the
spreading factor (SF), a configurable transmission parameter
that determines how many data bits are encoded in each chirp.
SF values range from 7, which offers shorter symbol duration
and lower range, to 12, which provides longer range with
increased latency.

Time on Air (ToA) refers to the time required to transmit
a packet. The following equations are used for calculating
LoRa’s airtime:*

25F
Tsymbol = ﬁ (1)
ToA = (1215 + Npayload) X Tsymbol (2)

In these equations, Tgympo is time taken to transmit each
symbol, Npayi0ad 1S the number of payload bytes , and SF and
BW are the spreading factor and bandwidth used.

LoRaWAN is a standardized Medium Access Control
(MAC) protocol developed by the LoRa Alliance [18], op-
erating primarily in a star-of-stars topology. It employs an
Adaptive Data Rate (ADR) mechanism, allowing the network
server to dynamically adjust a node’s spreading factor and
transmission power based on link quality [19]. LoRaWAN
supports three classes of operation, with Class A being the
most common for low-power devices. In Class A, each trans-
mission is followed by two receive windows, providing an
opportunity for the node to receive an acknowledgment (ACK)
for successful communication.

4For a detailed explanation of the airtime equations and how to calculate
Npayloada refer [17]



B. Energy Model of EGAL

Each node starts with a fixed battery value and operates in
one of three states: Transmission, Reception, and Sleep. The
energy consumed in each state is calculated as:

Energy . = Currentyae X Timegye 3)

Using SX1272-FiPy node connected to a Monsoon Power
Monitor, we measured current consumption for each SF. The
final measurements were averaged across all SFs, as variations
were negligible, resulting in 150 mA for Transmission (Tx),
60 mA for Reception (Rx), and 20 mA for Sleep. Transmission
and reception times are calculated using ToA equations 1 and
2, with the remaining time spent in sleep mode.

Network lifetime is defined as the time at which the first
node’s battery is completely depleted, taking into account the
energy consumption in all states. The battery drain for each
node can be expressed as:

Battery remaining BatterYinitial - Z (Energystate) (4)
state

The network lifetime, therefore, is determined by the node with
the minimum remaining battery. In LoRa networks, battery
disparity arises from different SFs, as each increase in SF
doubles the ToA (refer to equation 1). EGAL addresses this by
offloading packets from nodes with higher SFs to intermediate
nodes with lower SFs, thereby balancing the energy load.

III. RELATED WORK
A. Non-Relay-Based Approach

Various studies [7]-[12] propose advanced algorithms to
enhance LoRa’s energy efficiency by outperforming standard
ADR [19]. These algorithms offer improved allocation of
LoRa’s physical layer parameters, such as spreading factor,
transmission power, and coding rate. However, the issue of
energy disparity among nodes operating at different SFs per-
sists. While [20] and [21] address load balancing by assigning
a similar number of nodes to each SF, this can sometimes force
nodes to use higher SFs than necessary, leading to sub-optimal
energy consumption. In EGAL, we mitigate energy disparity
while ensuring that each node operates at its optimal SF.

B. Relay-Based Approach

Long-Lived LoRa (LLL) [22] extends network lifetime in
energy-harvesting LoRa networks by offloading packets from
depleted nodes to those with sufficient energy. We adapted
and evaluated LLL in non-energy-harvesting scenarios (see
Section VI-A). MLoRa [15] balances energy consumption
and extends network lifetime by evaluating relay candidates
based on the gain-to-cost ratio. To avoid local optima, MLoRa
employs a random Russian roulette method to explore new
routes, which can lead to inefficient choices. Similarly, EMH
[14] uses an epsilon-greedy reinforcement learning algorithm
to enhance LPWAN network lifetime by alternating between
exploiting the least energy-consuming path and exploring new
ones. EMH initially collects single-hop RSSI information and
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Fig. 2: Overview of the system workflow for EGAL. End-
nodes calculate reward values for communicating links and
include them in packet transmissions to the gateway. The
gateway analyzes these rewards, estimating rewards for non-
communicating links, and reassigns parent nodes to balance
the network load.

prioritizes links with high RSSI values. However, random ex-
ploration can result in sub-optimal decisions, and RSSI values
may become stale over time. Other methods [23], [24], [25]
improve reliability and energy efficiency by building multi-
hop LoRa networks but often introduce significant control
overhead. Unlike these approaches, EGAL operates centrally
with minimal overhead and avoids exploration costs.

IV. EGAL ALGORITHM

EGAL is a framework designed to balance energy consump-
tion across end nodes in a LoRa network, thereby extending
network lifetime. EGAL employs a hybrid approach, enabling
direct communication between end nodes and the gateway at
their respective spreading factors (SFs) while also allowing
nodes to offload packets to intermediate nodes operating at
lower SFs. Node-to-node communications are maintained at a
fixed SF, typically SF 7, 8 or 9, based on network deployment
specifics. We categorize nodes as ‘parent’ or ‘child’: a child
node transmits its packets to a parent node, which may be an
intermediate relay node or the gateway itself.

In EGAL, we draw inspiration from Reinforcement Learn-
ing (RL) [26] approaches, where actions are optimized based
on reward calculations to achieve a specific goal. However,
conventional RL techniques are not directly applicable in this
context for the following reasons: (1) Random exploration
of the environment, common in RL, can lead to inefficient
energy use in LPWANS, and (2) Changing network conditions
can render historical rewards, prior explorations, and actions
irrelevant. To address these challenges, EGAL employs an
adaptive reward-based algorithm that draws from RL prin-
ciples but is designed specifically to avoid these pitfalls. As
shown in Figure 2, EGAL incorporates Reward Calculation
and Reward Estimation based on the current network state
to respond to changing conditions and eliminate exploration
costs. The gateway, with its centralized perspective, uses
these rewards to adjust parent assignments, thereby optimizing
energy distribution across nodes.

Figure 3 offers a more granular view of the algorithm.
(D Each node calculates the reward associated with its link
to a child node upon packet reception (Section IV-A). @
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Fig. 3: Detailed overview of EGAL workflow: (1) Nodes calculate reward values based on current network interactions. (2)
Nodes update the gateway’s reward table (3) Gateway estimates the residual battery levels. (4) Rewards for inactive links
estimated based on the battery estimations. (5) Gateway reassigns parent nodes with maximum reward (highlighted in green)

The rewards are updated to the global rewards table at the
gateway. 3 After each communication round®, the gateway
estimates the battery levels of the end nodes (Section IV-B1).
@ The battery levels are used to estimate the reward values
of the inactive links that could not update the global reward
table (Section IV-B2). Finally, ® the gateway revises the
parent node assignments. In the ensuing sections, we provide
a detailed discussion of these steps.

A. Reward Calculation by End Nodes

Upon receiving a packet, the parent node P computes the
reward for its link with the child node C, denoted R(C, P):

Battc,
Batte + (BattP - Equeue)
2 3

P is Gateway,
R(C,P) =

otherwise.
&)

Here, Battc and Battp are the battery levels of the child
and parent nodes after transmission, and Egyeue €stimates the
energy needed to transmit queued packets at the parent node P.
Including Equeqe penalizes nodes with large queues, preventing
them from being overburdened with relay duties.

The reward value compactly represents the energy efficiency
of the link and reducing the need for extensive information
transfer to the gateway.

B. Gateway-Based Reward Estimation

The global reward table at the gateway provides a central-
ized view of energy efficiency of potential relay links. The
rewards for active links are updated directly by the nodes.
However, the changes in the battery levels of these nodes due
to communication also affect the rewards for the inactive links.
For instance, if node P primarily receives packets from child
(4, it updates R(C1, P) actively. However, if P depletes its
battery, the rewards for other potential child nodes, R(C;, P)
need re-calibration.

To ensure that the gateway’s decision-making is based
on the most recent and relevant data, we introduce Battery
Estimation for each node, which subsequently enables Reward
Estimation for the inactive links.

SA fixed period during which each node has one opportunity to transmit.

1) Battery Estimation: At the end of each communication
round, the gateway estimates the remaining battery for each
node. With knowledge of initial battery levels, data relayed,
and the SF used, the gateway can estimate the node’s energy
expenditure (Equation 3), and therefore the residual battery
(Equation 4). This allows for the recalibration of the stale
rewards values, as discussed next.

2) Reward Estimation: The gateway uses updated battery
estimates to recalibrate stale rewards using Equation 5, assum-
ing negligible gy since the gateway cannot determine each
node’s queue size. Node queue size is only considered during
actual reward calculations, not in the estimations. Finally,
the gateway leverages the updated global rewards table to
select the most efficient parent P for each child node C'
as P = argmax; R(C,i). The link with the highest reward
signifies the most efficient route for packet relay, balancing
the battery load across the network.

Reward estimation at the gateway for inactive links elimi-
nates the need for random exploration within the network.

C. Algorithm Flow with Example

Figure 3 illustrates the algorithm with three nodes, A, B,
and C, communicating directly with the gateway at SF 7, 9,
and 12, respectively. Nodes A and C serve as potential relays
or ’parents’ for Node B to help preserve battery life.

For simplicity, we assume the communication round com-
prises a single packet transmitted from Node B to the gateway
(GW), routed via Node C. It is assumed that the packet queues
are currently empty for all the nodes. The post-transmission
battery values are also depicted, with Node C experiencing
depletion due to the load it currently faces. The algorithm
flow proceeds as follows:

1) Node Reward Calculation: Node B transmits a packet
to Node C, including its battery level. Node C calculates
R(B,C) as 0.74 using Equation 5. With an empty queue
assumed, this reward represents the average battery levels of
Nodes B and C. For the link between Node C and the gateway,
R(C,GW) is 0.68, reflecting Node C’s residual battery.

2) Global Reward Table Update: Node C relays the data
to the gateway with the calculated rewards, which are then
updated in the global reward table. More detail on these
message exchanges are presented in Section V.
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Fig. 4: Passing control information through the network,
piggybacking on data packets and acknowledgments (ACKs).

3) Gateway Battery Estimation: The gateway estimates
battery levels for Nodes B and C based on their activity,
showing Node C at 68% and Node B at 80% battery. With
the knowledge of the total payload the nodes transmit and
SFs used, the gateway estimates the residual battery as per
Equations 1, 2, 3, and 4. Since Node A was not involved in
any communication, its battery level remains unchanged.

4) Gateway Reward Estimation: No transmission occurred
over links B <+ A and B < GW, so their rewards could not
be updated. However, with a fresh estimate of Node B’s battery
levels, the gateway re-calibrates R(B, A) and R(B,GW) to
0.87 and 0.80, using Equation 5.

5) Update Relays: Finally, the gateway assigns the relay
with the highest reward to each node for the next round ¢+ 1.
Consequently, Node B is assigned Node A as its parent, while
Node C continues to communicate directly with the gateway.

This example shows how EGAL adapts to Node C’s de-
pleting battery by redirecting its child through an alternative
route, reducing the load on Node C.

V. OVERALL SYSTEM DESIGN- INTEGRATING EGAL

This section outlines the integration of EGAL into a stan-
dard Class A LoRaWAN network, focusing on the modifica-
tions made to ensure low overhead.

A. Network Configuration and Setup

Network initialization in EGAL begins with the standard
LoRaWAN process, establishing single-hop links and deter-
mining each node’s one-hop SF to the gateway. This is
followed by a neighbor discovery phase for nodes to identify
potential parents. While the specifics of the neighbor discovery
algorithm are beyond this paper’s scope, any standard algo-
rithm can be applied. If node locations are known, neigh-
bor discovery may not be necessary. Given that most LoRa
network deployments maintain a static topology, EGAL is
well-suited for such static scenarios where frequent neighbor
discovery is unnecessary. To reduce complexity, EGAL limits
neighbor discovery to a single SF. Although multi-SF discov-
ery could enhance performance by providing more links for
load balancing, it would also lead to higher control energy
consumption.

In our implementation, the gateway broadcasts the neighbor
discovery schedule, after which nodes announce their presence
and report discovered neighbors back to the gateway. The
gateway then constructs the global reward table based on the

identified parent-child combinations. Neighbor discovery is
restricted to SF7, causing all inter-node communications to
occur at this SE.

B. Communication Phase

1) Parent-Child Synchronization: EGAL employs time-
division multiple access (TDMA) for communication, where
all nodes synchronize their time with the gateway during the
formation of single-hop links. LoRa’s low bit rate reduces the
need for frequent synchronization, as the required resolution
is coarse (on the order of tens of milliseconds). Each node
calculates its wake-up slot based on its assigned ID, ensuring
parent and child nodes wake up simultaneously. Time slots
repeat after each communication round, adhering to the stan-
dard 1% duty cycle regulations, with each node allotted one
slot per round.

While EGAL can also operate using an ALOHA-based
MAC like LoRaWAN, a time-slot-based MAC is preferred
for parent-child synchronization due to reduced overhead.
Nonetheless, EGAL is compatible with any MAC protocol.

2) Data Transmission: In EGAL, both node-to-node and
node-to-gateway communications utilize message types from
the LoRaWAN standard. Node-to-node communication uses
the Proprietary message type, while node-to-gateway commu-
nication employs the Confirmed Data Up type, which requires
acknowledgment for each uplink frame.

Figure 4 illustrates how EGAL minimizes overhead by
piggybacking reward values and parent update decisions onto
regular communication packets. Node B transmits its battery
level (Battp) alongside the payload (Datap), adding a 4-byte
overhead for the battery value. Parent Node A then calculates
the reward R(B, A) and relays Datap, the rewards R(B, A)
and R(A,GW), and its own payload (Data,). Each reward
adds 4 bytes of overhead. Consequently, the total overhead can
be summarized as 4(n. + 1), where n.. represents the number
of child nodes.

After each transmission, Class A LoRaWAN opens two
acknowledgment (ACK) windows. Parent update decisions are
included in these ACKs with a 2-byte overhead per update,
conveying the child ID and its new parent ID (as shown
in steps 3 and 4 of Figure 4). The received updates are
implemented in the following round.

In summary, embedding reward values in data packets adds
a 4-byte overhead per reward value, while parent updates
appended to ACK packets add a 2-byte overhead per update.
These control overheads are factored into our energy con-
sumption and battery drain calculations (Equations 3 and 4),
allowing for an accurate evaluation of each link’s cost.

3) Fallback Mechanism: If a node fails to reach its inter-
mediate parent after three missed ACKs, it directly transmits
to the gateway. The gateway then updates the node with
information about a new parent. If the node also fails to reach
the gateway at the estimated SF, it resorts to LoRaWAN’s
fallback mechanism, which allows communication with the
gateway at the maximum SF.
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VI. EVALUATION SETUP

In this section, we present evaluation of EGAL, obtained
from both simulations and hardware implementations.

A. Baseline Algorithms

We evaluate EGAL against three baselines: standard Lo-
RaWAN, Multi-Hop LoRa (MLoRa), which combines known
information exploitation with random exploration, and Long
Lived LoRa (LLL), a heuristic-based method. To ensure
fairness, we modified LoRaWAN from its original ALOHA-
based MAC to a time slot-based approach, similar to EGAL.
This change is essential because the ALOHA-based MAC
significantly reduces network lifetime due to increased packet
collisions and re-transmissions. By using a consistent link
layer across EGAL, LoRaWAN, MLoRa, and LLL, we achieve
a fair comparison. For completeness, we also include results
for the original LoORaWAN-ALOHA. However, the most ac-
curate reflection of EGAL’s performance gains comes from
comparing it to LoORaWAN-TDMA.

Analysing LLL in a Non-Energy Harvesting Scenario:
LLL enhances network lifetime by offloading packets to
intermediate affluent nodes in an energy-harvesting network.
A node is considered affluent if its battery level exceeds the
amount needed until the next recharge cycle, while a node with
less battery is deemed depleted. Depleted nodes are associated
with affluent ones until the affluent node’s battery drops below
the required threshold. This simple greedy association works
effectively due to the regular battery recharge cycle.

In a non-energy harvesting scenario, however, there is no
battery recharge cycle. Instead, we define an affluent node
as one whose battery is above the network’s current average

battery level. Here, the average battery level acts as a dynamic
threshold, analogous to the recharge cycle in the original LLL.
Just as the recharge cycle determines which nodes are affluent
by providing a predictable point of energy replenishment, the
average battery level allows us to identify affluent nodes by
comparing them to the network’s overall energy status.

The purpose of adpating LLL to a non-energy harvesting
network is to assess how a threshold-based greedy approach
compares to EGAL. Although our implementation does not
exactly replicate LLL, it adapts its core idea. We will refer to
this adapted version as LLL-Modified in our results.

B. Simulator Description

We integrate our algorithm into the existing LoRaWAN
module [27] of the NS3 simulator. In our simulation setup,
nodes are deployed randomly in a circular configuration with a
maximum radius of 5810 meters, and the gateway is positioned
at the centre. The duty cycle is set to 1% as per LoORaWAN
regulations, with an operating bandwidth of 125KHz. Nodes
communicate with the gateway using different spreading fac-
tors (SF) ranging from SF7 to SF12. Unless otherwise stated,
the direct SF of the nodes to gateway is sampled from a
uniform random distribution. Consequently, the average SF
of the network ranges between 9 and 10. All node-to-node
communication occurs at SF7.

Each node randomly chooses a load based on its operating
SE. Lower SFs have higher data rates, and we assign different
maximum loads accordingly: SF7 is 1300 bytes, SF8 is 710
bytes, SF9 is 365 bytes, SF10 is 165 bytes, SF11 is 65 bytes,
and SF12 is 30 bytes. These maximum loads are calculated
based on the length of our communication slots, which are
fixed to support one SFI12 transmission. The default mean
operating load across evaluations is 10% of the maximum load.
Instead of running our tests at a fixed load, assigning load to
each node based on its operating SF makes the experiments
more realistic, as in the real world, lower SFs are used to
transmit more data than higher SFs.

C. Configuration of Real-World Testbed

We extend our evaluation to a real-world LoRa testbed,
as depicted in the deployment Figure 5a. The number inside
the circle of Figure 5a represent node Id’s and the colour of
the circles indicate their operating SF to the gateway. The
indoor testbed spans multiple buildings on campus, covering
an area of approximately 33,750 square meters. There are 10
LoRa nodes and 1 gateway deployed in a realistic indoor
environment, with various obstacles such as walls, doors,
metallic shutters, and crowded common spaces. For the LoRa
transmitters, we utilize SX1272-based Fipy microcontrollers.
The gateway is equipped with an SX1301-based IC880A,
connected to a Raspberry Pi (see Figure 5b). The LoRa
network operates with a bandwidth of 125 kHz, and all nodes
communicate at a duty cycle of 1%. Similar to the simulator,
nodes connect to the gateway at various spreading factors (SF)
from SF7 to SF12, while all node-to-node communication
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Fig. 6: a) Comparison of Network Lifetime Across Network’s
Average SF Values. b) Standard Deviation of Remaining Node
Battery Levels at First Node Depletion.

occurs at SF7. The load distribution across each SF is also
consistent with the simulator.

VII. RESULTS

We study the performance of EGAL using simulation while
varying the following parameters: topology (Section VII-A),
initial battery capacity (Section VII-B), proportion of relay
nodes (Section VII-C) and load distribution (Section VII-D).
Additionally, we analyse the overhead of EGAL in Sec-
tion VII-E. Finally, we present the real-world testbed eval-
vation in Section VII-F.

A. Effect of Topology

We evaluate the impact of varying network topologies
on EGAL’s performance compared to baseline algorithms.
The topologies are adjusted based on the network’s average
Spreading Factor (SF). A lower average SF indicates that most
nodes are closer to the gateway and can use lower SFs for
transmission, while a higher average SF suggests that nodes
are farther away. Each node starts with a battery level of 250
mAbh, and results are averaged across three trials, each with
random node placements.

1) Network Lifetime: Figure 6a illustrates that EGAL con-
sistently delivers the best network lifetime across all topolo-
gies. The most significant improvement is observed when the
average SF ranges from 9.5 to 10.5, where EGAL maximizes
relay opportunities to enhance network lifetime. On the left
side of the graph, where lower SF nodes dominate, packets
reach the gateway at a lower energy cost, reducing the need for

relaying. On the right side, where higher SF nodes dominate,
all algorithms struggle due to the limited availability of parent
nodes for relaying packets.

EGAL’s performance aligns closely with threshold-based
solutions like LLL when distributions are skewed towards
lower SFs. In these cases, both EGAL and LLL identify
most nodes as having sufficient energy, resulting in minimal
relaying. However, when there are abundant opportunities to
relay and extend network lifetime, EGAL outperforms all
baselines. Specifically, at an average SF of 9.5, EGAL extends
the network lifetime by 199% over MLoRa, 95% over LLL-
Modified, and 457% over standard LoRaWAN-TDMA. In
contrast, MLoRa consistently underperforms, even dropping
below LoRaWAN-TDMA at an average SF of 8, due to the
high overhead associated with its random exploration strategy.

2) Residual Battery: We also examine the standard devi-
ation (o) of residual battery levels across the network when
the first node depletes its battery. A high standard deviation
indicates significant imbalance, while a low standard deviation
suggests well-balanced battery usage. As shown in Figure 6b,
EGAL maintains a substantially lower standard deviation,
demonstrating effective battery load balancing. Some imbal-
ance is observed only at an average SF of 11, where relay
opportunities are minimal, while the imbalance remains almost
negligible until an average network SF of 10.

While LLL also demonstrates low battery variance at lower
SF distributions, its effectiveness diminishes from an average
SF of 9.5, when there is opportunity for relaying. On the other
hand, MLoRa and standard LoRaWAN consistently exhibit
high battery variance across all topologies.

It’s important to note that LoORaWAN-ALOHA consistently
underperforms due to frequent packet collisions in large
networks, leading to numerous retransmissions. The average
Packet Reception Rate (PRR) for LoORaWAN-ALOHA across
all SF distributions is approximately 70%, while the other
algorithms, utilizing TDMA-based link layers, achieve nearly
100% PRR. Therefore, the performance of EGAL is best com-
pared against LORaWAN-TDMA. From this point forward, any
reference to LoRaWAN indicates TDMA-based LoRaWAN.

B. Different Initial Battery Levels

In this section, we analyze the behavior of EGAL in a
network where nodes have different initial battery capacities.
Each node’s initial battery value is randomly selected from
a uniform distribution ranging between 250 mAh and 500
mAh. The results are presented in Figure 7a, where the x-
axis represents the battery range, while the y-axis shows the
cumulative probability of nodes within that range. We plot
the cumulative distribution function (CDF) of battery levels
from the initial phase (0%) to the final phase, when the first
node depletes its battery (100%). Five CDFs are plotted, each
representing a different stage of the network’s progression.

As shown in Figure 7a, the range of battery levels narrows as
the network progresses. Initially, there is a 250 mAh disparity
between the nodes with the lowest and highest battery levels.
However, EGAL effectively balances the load across all nodes,
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reducing this gap to approximately 50 mAh at the mid-
point of the experiment. By the conclusion, nearly all nodes
have depleted their batteries simultaneously. This evaluation
demonstrates EGAL’s strong capability in balancing network’s
energy consumption.

C. Varying Percentage of Relay Nodes

In this experiment, we investigate how varying the per-
centage of nodes allowed to provide relay support affects
EGAL’s performance. We tested scenarios with no relay nodes
(0%) and gradually increasing up to a scenario where all
potential relays were active (100%). Each configuration was
tested across 10 trials, with different groups of nodes randomly
selected to provide relay support in each trial.

The results, illustrated in Figure 7b, reveal that allowing
just 30% of nodes to act as relays increases the average
network lifetime by approximately 2.46x compared to the
no-relay scenario. Even with only 20% of nodes acting as
relays, EGAL achieves a significant improvement, with the
upper limit reaching 60% of the network lifetime observed
in the full relay (100%) scenario. This suggests that network
designers can strategically plan the deployment to designate
a small subset of nodes as relays to ensure that nodes with
higher SFs have sufficient options for relaying packets.

Additionally, as the percentage of nodes providing relay
support increases, the variance in network lifetime across the
trials decreases. This reduction becomes particularly signif-
icant when 50% or more of the potential relays are active,
leading to more consistent network performance.

In summary, not all lower SF nodes need to provide relay
support. The results indicate that even with a fraction of nodes
available as relays, EGAL significantly extends the network
lifetime.

D. Run-Time Load Variation

In this section, we examine how EGAL adapts to run-time
changes in network load. Initially, all nodes operate under their
regular operating load (as detailed in Section VI-B) and start
with a battery level of 250 mAh. At 25% of the network’s
lifetime, the load on nodes operating at direct SF 7 and 8
is tripled. This high-load phase continues until 75% of the

network’s lifetime, after which the nodes return to their regular
load for the remaining time. This increase in load specifically
targets SF7 and SF8 nodes because these act as relays for
the majority of high-SF nodes, making this a particularly
challenging scenario for load balancing.

Figure 7c presents the results, with error bars representing
the variance in remaining battery capacity among the nodes.
In the initial phase, EGAL effectively maintains low battery
variance, indicating balanced energy consumption across the
network.

However, once the high-load phase begins, battery disparity
increases as nodes operating at SF7 and SF8 expend more
energy to manage their increased load. To balance energy con-
sumption more effectively, EGAL reduces the overall number
of packets relayed via these nodes, which helps lower the
battery disparity by the end of the high-load phase.

When the network load returns to normal, EGAL continues
to reduce battery variance. However, the number of packets
sent through relay nodes does not immediately return to the
levels seen in the initial phase because the SF7 and SF8 nodes
have expended significant energy during the high-load phase.
This adaptability demonstrates EGAL’s ability to maintain
balanced energy usage under varying network conditions.

E. Overhead Analysis of EGAL

We conducted an overhead analysis of the EGAL algorithm
by simulating a network with 120 nodes, where one-hop
SFs to the gateway were uniformly and randomly distributed
between SF7 and SF12. This configuration maximized the
number of potential relay nodes, allowing us to assess the
maximum possible overhead when EGAL fully leverages relay
opportunities. The algorithm dynamically selected paths to the
gateway, with options ranging from a direct 1-hop route to up
to 6 hops (e.g., SF12 relaying through SF11 down to SF7). The
resulting average hop count was approximately 2, indicating a
strategic balance between direct gateway access and multi-hop
relays to optimize energy usage. Individual packet overheads
ranged from 0.48% to 18.1%, with an average control overhead
of 2.9% per packet, ultimately extending network lifetime by
94% compared to standard LoRaWAN.
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F. Real-World Deployment

Figure 8 presents the results comparing EGAL and Lo-
RaWAN in a real-world deployment. We ran the testbed
for 24 hours and measured the total energy consumed by
each node at the end of this period. The results indicate
that LoRaWAN exhibits significant energy disparity, with a
difference of 25,826 mAs between nodes 1-2 (operating at
SF-12) and nodes 9-10 (operating at SF-7). In contrast, EGAL
effectively balances battery consumption, reducing the dispar-
ity significantly to 7,648 mAs. Notably, the network topology
(Figure 5a) is imbalanced, as not all nodes have an equal
number of potential relays. Despite this, EGAL significantly
improves energy balance compared to LoRaWAN.

VIII. CONCLUSION

We introduced EGAL, a relay-based centralized approach
that balances energy consumption and extends network life-
time in LoRa networks. EGAL’s ability to dynamically adjust
relay duties, supported by predictive analytics at the gateway,
makes it a robust solution for improving the longevity of IoT
networks. Through both simulations and real-world testbed
evaluations, EGAL demonstrated substantial improvements
over standard LoRaWAN and existing solutions, effectively
addressing battery imbalance and enhancing network lifetime
with minimal overhead. Furthermore, EGAL’s reward-based
framework offers promising potential to meet diverse network
objectives by expanding the reward function to include metrics
such as link quality, latency, and battery discharge rate.
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